(UNDXTED) HAID# 000 15534

DATA EVALUATION RECORD

- 1. CHEMICAL: Metolachlor (108801)
- 2. FORMULATION: Technical
- 3. CITATION: Sachsse, K.; Ullman, 'l. (1974) Acute Toxicity to Rainbow Trout, Crucian Carp, Channel Catfish, Bluegill, and Guppy of Technical CGA 24705. Project No. Siss 3516. Received Sep. 26, 1974 under 5G1553. (Unpublished report prepared by CIBA GEIGY Ltd., Basle, Switzerland; CDL:112840-N).
- 4. REASON FOR REVIEW: Generic Standard for Metolachlor
- 5. REVEIWED BY: H. T. Craven
 Biologist
 Efficacy and Ecological Effects Branch
 Registration Division
- 6. DATA REVIEWED: 12/16/77
- 7. TEST TYPE: Cold Water Fish Acute 96 hr. (LC₅₀)
- A. TEST ID: ES F 1
- B. TEST SPECIES: Rainbow Trout (Salmo gairdneri)
- C. TEST MATERIAL TYPE HOLDER TO PROMITE VIOLE
- Ω . REPORTED RESULTS: 96 hr (LC₅₀) = Approx. 2 ppm. In the report, a general comment was made with regard to all species tested: About 4 to 6 hours after adding the substance, the fish in concentrations where mortality occurred showed hypersensitivity, loss of equilibrium and later apathy.
- E. CONCLUSIONS:

The aeration of a static bioassay may result in the volatilization of the toxicant from the medium, therefore it is impossible to assess the validity of the reported LC50.

study does not meet the requirement for a cold water fish acute LC_{50} .

Troot I MARLID

This

MATERIALS AND METHODS

Test Conditions: The study was described to only a limited extent as it relied on the statement:

"The procedure for testing followed that prescribed by the United States Federal Department of the Interior Fish and Wildlife Services: 'Procedures for evaluation of acute toxicity of Pesticides to fish and wildlife' 1964."

B. Statistical Analysis: The LC_{50} values were calculated by probit analysis according to Goulden A., 1960, Method of Statistical Analysis, John Wiley and Sons, third printing p. 404-408.

DISCUSSION/RESULTS

Reported Results: $96 \text{ hr } (LC_{50}) = \text{Approx. 2 ppm.}$ In the report, a general comment was made with regard to all species tested: About 4 to 6 hours after adding the substance, the fish in concentrations where mortality occurred showed hypersensitivity, loss of equilibrium and later apathy.

REVIEWER'S EVALUATION

Test Procedure

Several deviations from the recommended protocol described in the proposed 1977 Guideline include: (1) Only four vs. a minimum of five dosage levels were tested; (2) Although acetone controls were run, no acetone free controls were established; (3) The test containers were aerated during the study. It is noted that the loading factor (1.9 g/liter) exceeded the recommended 1.0 g/liter thereby possibly necessitating aeration.

Statistical Analysis

The Environmental Safety Section did not attempt to validate the statistics portion of this study because aeration was performed, thereby negating any LC50 value.

Validation С.

- Category: Invalid ٦.
- Rationale: The aeration of a state bioassay may result in the toxicant from the medium. 2. volatilization
- Repairability Rationale: The rainbow trout section of the study cannot be repaired even to supplemental. 3.

CONCLUSIONS

The aeration of a static bioassay may result in the volatilization of the toxicant from the medium, therefore it is impossible to assess the validity of the reported LC50; it is noted that the loading factor (1.9 g/liter) exceeded the recommended 1.0 g/liter thereby necessitating aeration. This study does not meet the requirement for a cold water fish acute LC50.

- 8. TEST TYPE: Warm Water Fish Acute 96 hr (LC₅₀)
 - A. Test ID: ES G1
 - B. Test Species: Crucian Carp (<u>Carassius carassius</u>), Guppy (<u>Lebiates reticulatus</u>, Bluegill (<u>Lepomis machrochirus</u>), Channel Catfish (<u>Ictaluris ameriurus</u>).
 - C. Test Material Technical Metolachlor
 - D. Reported Results:

Species	96 Hour LC50 (ppm)	95% Confidence Limits
Crucian Carp (Carassius carassius)	4.9	3.6 - 6.8
Channel Catfish (Ictaluris ameiurus	9	3.6 - 6.8
Bluegill (Lepomis macrochirus)	15	*
Guppy (Lebistes reticulatus)	8.6	7.4 - 10.5

* No confidence limits were calculable

In the report, a general comment was made with regard to all species tested: About 4 to 6 hours after adding the substance the fish in concentrations where mortality occurred showed hypersenstitivity, loss of equilibrium and later apathy. These symptoms were seen at 2.1 ppm in carp and 6.5 ppm in guppy.

F. Results of Evaluation:

The LC₅₀ values reported for the guppy, crucian carp and channel cat@ish and \ are scientifically sound. These LC₅₀ values indicate metalachlor is moderately toxic toyfish.

warm water

(3)

MATERIALS AND METHODS

Test procedure and method of Statistical analysis was the same as previously cited in the rainbow trout portion of this study.

DISCUSSION/RESULTS

Guppy, Crucian carp and Channel Catgish

The 96 hour LC₅₀ values and 95% 1.1. are respectively: Carp 4.9 (3.6-6.8) ppm, Channel Catfish 4.9 (3.6-6.8) and Guppy 8.6 (7.4-10.5) ppm. Where mortality occurred, those organisms displayed (after 4-6 hrs. exposure) hypersensitivity, loss of equilibrium and apathy. These symptoms were seen at 2.1 ppm in channel catfish and carp and 6.5 for guppy.

Bluegill 2.

Four dosage levels were tested (1, 10, 21 and 49 ppm). No mortality occurred at the two lower levels; but the next two levels showed 75% and 100% mortality respecitvely. A 96 hour LC50 of 15 ppm without confidence limits was reported.

REVIEWER'S EVALUATIONS

Test Procedure

Several deviations from the recommended protocol described in the proposed 1977 Guidelines include: (1) only four vs. a minimum of five dosage levels were tested; (2) although acetone controls were run, no acetone free controls were established, (3) in the case of the carp and the bluegill, the test temperature (14°C \pm 2°C) is below the recommended range (19°C - 26°C + 1°C) for warm water species.

Statistical Analysis: В.

Carp and Guppy

Finney probit was performed on the guppy portion of the study; the resulting LC50 8.6 (see accompanying printout) is the same as the reported value. The same statistical analysis the Evnironmental Safety Section performed on the Channel Catfish study applies to the carp becasue the dosage levels and 96 hr % mortality are the same for both species (see xerox copy of catfish statistics).

Channel Catfish

The Environmental Safety Section performed a Finney probit analysis on the data (see accompanying printout). The determined LC50 (4.8) compares favorably with the reported value of 4.9.

3. Bluegill

Environmental Safety Section did not perform a Finney probit analysis as the requirement for two partial mortality levels was not met. Instead, a linear regression line was constructed (see accompanying printout and graph). The LC₅₀ of 12.1 ppm cannot be confirmed by a test for Chi² and fails the Tab T test.

C. Validation

- 1. Carp and Guppy
 - a. Category: Supplementary
 - b. Rationale: Neither of these species are recommended test test species. Furthermore, in the case of carp, the test temperature ($14^{\circ}C + 2^{\circ}C$) is below the recommended range ($19^{\circ}C 26^{\circ}C$) for warmwater species.
 - c. Repairability rationale: This portion of the study cannot be upgraded to core.
- 2. Channel Catfish

a. Category: -Supplementary-

Personnal b. Rationale: The channel catfish-Ictalaurus punctatus is municatus with a recommended test species, however, the Environmental Safety section was not able to determine if Ictalurus at the species ameiurus is the same species.

Ransinahility nationale: This pontion of the study can

Repairability rationale: This portion of the study can be upgraded to core providing <u>letalures</u> ameriurus is the same species as <u>letalurus</u> punctatus.

3. Bluegill

- a. Category: Invalid
- b. Rationale: Conducting this portion of the study at too low a temperature (14°C \pm 2°C) instead of (19°C \pm 26°C) prohibits this study from being classified as core. Secondly, the LC50 value cannot be supported by statistical analysis.
- c. Repairability: This portion of the study can be upgraded to supplementary provided an appropriate statistical of analysis is perfermed.

B

CONCLUSIONS

The studies are scientifically sound and indicate that metolachlor is moderately toxic to these species of fish. Neither the carp or the guppy are recommended test species therefore, while the studies augment the required data on a recommended warm water fish they do not serve as a substitute.

Channel catfish - This study indicates that metolachlor is moderately toxic to fish with an LC $_{50}$ of 4.9 ppm (95% C.L. 3.6 - 6.8 ppm). The study on channel catfish is sound and acceptable to meet the requirement for a warm water fish acute LC $_{50}$.

Bluegill Sunfish - The study on bluegill is not statistically sound. This is due to having too few partial mortality levels.

1. 12. 6.5 7. 13. 1C. 13. 13. Tat CHIZ = 5.99 > 2,334 4.478 1.934 1.672 2.334 YINT LW M CHIZ 4.838 3.633 6.443 LD50 LIICL UPCL LDio 2.503 1.552 4.035 LOCL UPCL 9.353 LD90 6.480 13.499 LOCL UPCL

(2)			A	11.11
Test Species Ictalurus ameiurus (?)	MALYSIS WORK S	HEEF Chemic		ztolachlor Jan. 1974
Source Aquanium Basle, Suitzerland	<. 1 .	bute I		DVM, 1974
o. Period 96 hours Analysi	s by: Sachss	(TIE)	10)	(Date)
	Observed %	Expected %	10-E	Contributions
10011001101	Mortality	Mortality	<u>j - </u>	o Chi(Nomo #1:)
/No. tested	100		<u> </u>	
6.5 7/12	58			
2,1 1/12	8			
0/12			-	
Total Fish Tested =		Total		1 234
Number of Doses (K) =	Chi ² = Total	Cont. X Total	<u>. 1153 = </u>	<u> </u>
Degrees of freedom (K-2) =	to Ch	for 2 dec	a Antitree	200m = 5.99
	Chi (p=.05)	101	, 02	
				وهار هند چه ومواهدر شواهش همواهش ومواهدو مهداشته شد. بدر و در در در در معراهدار شواهش همواهش ومواهدو شد بدر و
DETERMINE flc50:		•		•
DETERMENT THOUSE.		120 -1 10 -	170.1-	•
rc81t	$S = LC_0$	11/IC50 7, IC50	<u> </u>	
	कर १/ इस्ट लोन	i used hetween	16% and	84% E) =
LC ₅₀	$\sqrt{M_1} = \frac{1}{1} \sqrt{\pi \pi 2}$	i, abea me o see		•
$s_{1050} = s_{1050} $	(Momo.)	(2) =		
1 1LC50 = S 1/ N = 3	·			
DETERMINE fS:				
	\	•		
R (Largest/Smallest dose plotted	· <u>}</u>			
S (As determined above)				•
A (Nomo. #3 using R and S)			•	•
$fS = A^{10(K-1)/K^{\sqrt{N}}} = A$	(Nomo	· /2)=	•	<u> </u>
		•		•
DETERMINE flcy		Ϋ;		•
$(fs)^{x} = fs^{2.33} \text{ or } 1.30 \text{ (Table 3)}$	and Mono. //2)	=		
# 4' 5	•		•	
ficy (Nomo. #4 using (fS)x and t	rc50) =			
		`	•	•
RESULTS (LCx and Confidence Lim	its at p = .05):		•
	LC _c	• •		
[LC ₁ =		Won Limit (LC)	50/:1050.)
Lower Limit (LC1/LCy)	U p	per Limit (LC)	So X TLO	50)
Upper Limit (LC1 X LCy)		•		
1 LC99 =		•	•	.eee.
Lower Limit (LC99/LCy)				
Upper Limit (LC99 X LCy)			9	· / X
			•	

An An

<u> </u>	<u>.</u>	+	-		•		+			0		-		ī				- 5	1		4
		<u>, , , , , , , , , , , , , , , , , , , </u>	1011	1 1		, <u>!,!</u>	1 1.	1111	1,1,1		11.1	1,1,	,1,1,1 			1111	<u>.1.1.1.</u> .1.1.1.2	<u>! </u>			1
		1.4111.		İ												:					<u> </u>
	13.13	-1-1-1		-			. :												1 = =		=
				1-				1 1 1 1		1311		-14:::									
		<u> </u>				<u> </u>	: : -		1112	::::						***************************************					
								1 1 1 1			1111				- :						
																					2
				- -				: : : :	1					.::	====						
				-]-		::::								:1	:1::						
Ė							; : : :		.		::::										Ξ
				- -																	. 7
		;		- -		#	1								詽						
				<u> </u>			44		1.1.1												
				- -		Ш			丗			##				###					_
			-1-1	<u> </u>				+++		44+					14	++++					- 5
				-																	م
	\searrow																				-6
			S .,						1	•											-
	1				\sim		i :::			=:::				=====					1:: =::		= ,
			= :															inii:			- n \
															1:::						-
						1.2					\rightarrow	=		3 1			letudi Dal 1 1				=
	1-22-23						11:::						>	17					1		-67
	1						1				2:33				<u> </u>	S					\exists
				= =	===													$\equiv \equiv$			
	1-1-1-																		\		
		-+:-			1415	HHH				1		11:									=
	1111										 :;;;				1						\exists
		THE					Ш									H					\exists
	1000	1 = 11						1 - 1 - 1	1:-::	1:	1111	1 2 2	- E								
	1 4 4 4 4 4								1.54				171.11				1		4::::		-0
	====						<u> </u>							1::::							=
										+			1:===		==				‡==		=
													(' = :=:-	1							=
	4:10					==:] <u>:</u> :::	1		1	1:::::				12:1						
===				•	1	FEE	ļ::::	12272													
							ļi.				::::::	===		: <u>::</u> i	==		-				
							1							7	T		1				目
1						<u> </u>					 	:									-a-
						压	H- H-		1##										- !		
															:+-					-	\exists
											11111			11			111	1111			
+++				+-}			11:				1:111		11+++				+	- - -		++++	\dashv

```
Table ?
Bluegeli
Dec 10,77
Dual
Tab
            100.
          12.128
                       LD50
           0.042
                       LOCL
        3475.075
                       UPCL
            7.120
                       LDID
           0.024
                       LOCL
        2111.150
                       UPCL
          20.658
                       LD90
         . 0.060
                       LUCL
        7155.062
                        %CON
                        DF
                        TYAL
            1. 342 (S.)
     4.07902 356
     2.0196611218 ++
```



```
1.
1Ξ.
      10.
      ş.
12.
      21.
      13.
13.
 5.997 0.00
11.001
-5.326
1.233
0.000
                  YINF
                  LW M
                  CHIZ
 8.683
7.631
9.879
                  LD50
                  LOCL
                  UPCL
 6.639
5.420
8.133
                  LD10
                  LOCL
                  UPCL
11.355
9.133
14.118
                  LD90
                  LOCL
                  UPCL
```


10	1088	VALIDATION SHEET	CRF #		معیومیدمید پیمیشد اد مدار مورستان میواند		PAGI	<u> 1</u>	_0F	1	:
FORMULATION	1:		IA	ΙB	T	FW	EC	R			_
% a.i.	SC #	CHEMICAL NAME	Yali	dato	r:	THE RELLEGY AREAS		Date	•		-
Tech.		CGA-24705		ıda		02 December, 19			197		
		(Metolachlor)	Test Type:							,	
	ă,			Cold	lwat		ish C ₅₀	Acut	e 90	5-hour	
			Tes	t ID.	# E	SG4	····			·	

CITATION:

Sachesse, K., and L. Ullmann.

VALIDATION CATEGORY:

Invalid

1974. Acute Toxicity to

Rainbow Trout, Crucian Carp,

Channel Catfish, Bluegill,

and Guppy to Technical CGA-24705 Ciba-Geigy, Ltd.

RESULTS:

96-hour LC $_{50}$ for $\underline{\text{Salmo}}$ gairdneri was reported to be "approximately 2 $\overline{\text{ppm}}$ ".

VALIDATION CATEGORY RATIONALE:

Test aquaria were aerated throughout

the treatment.

CATEGORY REPAIRABILITY/RATIONALE:

CITATION:

Sachesse, K., and L. Ullmann. 1974. Acute Toxicity to Rainbow Trout, Crucian Carp, Channel

Catfish, Bluegill, and Guppy of Technical CGA-24705. Ciba-

Geigy, Ltd.

RESULTS:

96-hour LC₅₀ for Lepomis macrochirus was reported to be "approximately 15 ppm". (No 95% C. I. Was reported).

VALIDATION CATEGORY RATIONALE:

Preferred test temperature for the Bluegill is not less than 18°C. This study was conducted at 14°C + 2°.

CATEGORY REPAIRABILITY/RATIONALE:

Yes to supplemental by supplying section with the appropriate statistical method used to derive the LC₅₀.

Invalid

DATA EVALUATION RECORD

- 1. CHEMICAL: Metolachlor (108801)
- 2. FORMULATION: Technical
- 3. CITATION: Sachsse, K.; Ullman, L. (1974) Acute Toxicity to Rainbow Trout, Crucian Carp, Channel Catfish, Bluegill, and Guppy of Technical CGA 24705.

 Project No. Siss 3516. Received Sep. 26, 1974 under 5G1553. (Unpublished report prepared by CIBA-GEIGY Ltd., Basle, Switzerland; CDL: 112840-N).
- 4. REASON FOR REVIEW: Generic Standard for Metolachlor
- 5. REVIEWED BY: H.T. Craven 7. Craven

 Biologist

 Efficacy and Ecological Effects Branch

 Registration Division
- 6. DATA REVIEWED: 12/16/77
- 7. TEST TYPE: Cold Water Fish Acute 96 hr. (LC₅₀)
 - A. TEST ID: ES F 1
 - B. TEST SPECIES: Rainbow Trout (Salmo gairdneri)
 - C. TEST MATERIAL: Technical Metolachlor
 - D. REPORTED RESULTS: 96 hr. (LC₅₀) = Approx. 2 ppm.

 In the report, general comment was made with regard to all species tested: About 4 to 6 hours after adding the substance, the fish in concentrations where mortality occurred showed hypersensitivity, loss of equilibrium and later apathy.
 - E. COMMENTS: The aeration of a static bioassay may result in the volatilization of the toxicant from the medium; therefore, it is impossible to assess the validity of the reported LC_{50} . This study does not meet the requirement for a cold water fish acute LC_{50} .

MATERIALS AND METHODS

A. Test Conditions: The study was described to only a limited extent as it relied on the statement:

And the second of the second o

"The procedure for testing followed that prescribed by the United States Federal Department of the Interior Fish and Wildlife Services: 'Procedures for evaluation of acute toxicity of Pesticides to fish and wildlife' 1964."

B. Statistical Analysis: The LC₅₀ values were calculated by probit analysis according to Goulden A., 1960, Method of Statistical Analysis, John Wiley and Sons, third printing pp. 404-408.

DISCUSSION/RESULTS

Reported Results: 96 hr. (LC_{50}) = Approx. 2 ppm. In the report, a general comment was made with regard to all species tested: About 4 to 6 hours after adding the substance, the fish in concentrations where mortality occurred showed hypersensitivity, loss of equilibrium and later apathy.

REVIEWER'S EVALUATION

A. Test Procedure

Several deviations from the recommended protocol described in the proposed 1977 Guideline include: (1) Only four vs. a minimum of five dosage levels were tested; (2) Although acetone controls were run, no acetone-free controls were established; (3) The test containers were aerated during the study. It is noted that the loading factor (1.9 g/liter) exceeded the recommended 1.0 g/liter thereby possibly necessitating aeration.

B. Statistical Analysis

The Environmental Safety Section did not attempt to validate the statistics portion of this study because aeration was performed, thereby negating any ${\rm LC}_{50}$ value.

- C. Validation
 - 1. Category: Invalid
 - Rationale: The aeration of a state bioassay may result in the volatilization of the toxicant from the medium.

3. Repairability Rationale: The rainbow trout Section of the study cannot be repaired even to supplemental.

وأأسيا فالعبادي والأنافان والهادات

COMMENTS

The aeration of a static bioassay may result in the volatilization of the toxicant from the medium; therefore it is impossible to assess the validity of the reported LC_{50} ; it is noted that the loading factor (1.9 g/liter) exceeded the recommended 1.0 g/liter thereby possible necessitating aeration. This study does not meet the requirement for a cold water fish acute LC_{50} .

- 8. TEST TYPE: Warm Water Fish Acute 96 hr. (LC₅₀)
 - A. TEST ID: ES G1
 - B. TEST SPECIES: Crucian Carp (Carassius carassius),

 Guppy (Lebistes reticulatus), Bluegill

 (Lepomis machrochirus), Channel Catfish

 (Ictaluris ameriurus).
 - C. TEST MATERIAL: Technical Metolachlor
 - D. REPORTED RESULTS:

SPECIES	96 <u>LC₅₀ (ppm</u>)	95% CONFIDENCE LIMITS
Crucian Carp (Carassius carassius)	4.9	3.6 - 6.8
Channel Catfish (Ictaluris ameriurus	4.9	3.6 - 6.8
Bluegill (Lepomis machrochirus)	15	*
Guppy (Lesbistes reticulatus)	8.6	7.4 - 10.5

^{*}No confidence limits were calculable

In the report, a general comment was made with regard to all species tested: About 4 to 6 hours after adding the substance the fish in concentrations where mortality occurred showed hypersensitivity, loss of equilibrium and later apathy. These symptoms were seen at 2.1 ppm in channel catfish and carp and 6.5 ppm in guppy.

E. COMMENTS

The LC₅₀ values reported for the guppy, crucian carp, channel catfish and bluegill sunfish are scientifically sound. These LC₅₀ values indicate metolachlor is moderately toxic to warm water fish.

MATERIALS AND METHODS

Test procedure and method of statistical analysis was the same as previously cited in the rainbow trout portion of this study.

DISCUSSION/RESULTS

1. Guppy, Crucian Carp and Channel Catfish

The 96 hour LC values and 95% 1.1 are respectively: carp 4.9 (3.6-6.8) ppm, channel catfish 4.9 (3.6-6.8) and guppy 8.6 (7.4-10.5) ppm. Where mortality occurred, those organisms displayed (after 4-6 hrs. exposure) hypersensitivity, loss of equilibrium and apathy. These symptoms were seen at 2.1 ppm in channel catfish and carp and 6.5 for guppy.

2. Bluegill

Four dosage levels were tested (1, 10, 21 and 49 ppm). No mortality occurred at the two lower levels; but the next two levels showed 75% and 100% mortality respectively. A 96 hour LC $_{\rm 50}$ of 15 ppm without confidence limits was reported.

REVIEWER'S EVALUATIONS

A. Test Procedure

Several deviations from the recommended protocol described in the proposed 1977 Guidelines include: (1) only four vs. a minimum of five dosage levels were tested, (2) although acetone controls were run, no acetone-free controls were established, (3) in the case of the carp and the bluegill, the test temperature ($14^{\circ}\text{C} + 2^{\circ}\text{C}$) is below the recommended range ($19^{\circ}\text{C} - 26^{\circ}\text{C} + 1^{\circ}\text{C}$) for warm water species.

B. Statistical Analysis:

1. Carp and Guppy

Finney probit was performed on the guppy portion of the study; the resulting LC_{50} 8.6 (see accompanying printout) is the same as the reported value. The

same statistical analysis the Environmental safety Section performed on the channel catfish study applies to the carp because the dosage levels and 96 hr. % mortality are the same for both species (see Zerox copy of catfish statistics).

2. The Environmental Safety Section performed a Finney probit analysis on the data (see accomanying printout). The determined LC₅₀ (4.8) compares favorably with the reported value of 4.9.

3. Bluegill

Environmental Safety Section did not perform a Finney probit analysis as the requirement for two partial mortality levels was not met. Instead, a linear regression line was constructed (see accompanying printout and graph). The LC 50 of 12.1 ppm cannot be confirmed by a test for CHi and fails the Tab T test.

C. Validation

- 1. Carp and Guppy
 - a. Category: Supplementary \
 - b. Rationale: Neither of these species are recommended test species. Furthermore, in the case of carp, the test temperature ($14^{\circ}\text{C} + 2^{\circ}\text{C}$) is below the recommended range ($19^{\circ}\text{C} \overline{26}^{\circ}\text{C}$) for warm water species.
 - c. Repairability rationale: This portion of the study cannot be upgraded to core.

2. Channel Catfish

a. Category: Core

Personal communication with Ciba-Geigy indicated that the species reported as <u>ameriurus</u> was actually punctatus.

3. Bluegill

- a. Category: Supplementary
- b. Rationale: Conducting this portion of the study at too low a temperature (14 $^{\circ}$ C \pm 2 $^{\circ}$ C) instead of

(19°C - 26°C) prohibits this study from being classified as core. Secondly, the LC value has not been supported by statistical analysis.

Repairability: Even if an appropriate statistical analysis is performed, this portion of the study cannot be upgraded to core because

COMMENTS

Carp and Guppy -

The studies are scientifically sound and indicate that metolachlor is moderately toxic to these species of fish. Neither the carp nor the guppy is recommended test species; therefore, while the studies augment the required data on a recommended warm water fish, they do not serve as a substitute. Channel Catfish -

This study indicates that metolachlor is moderately toxic to fish with an LC₅₀ of 4.9 ppm (95% C.L. 3.6-6.8 ppm). study on channel catfish is sound and acceptable to meet the requirement for a warm water fish acute LC50. Bluegill Sunfish -

The study on bluegill is not statistically sound. due to having too few partial mortality levels. This is

6.5 1: 12. 10. 75. 12. 21. 12. 5.997 0.00 11.001 -5.326 1.233 0.000 YINT LW M CHIZ 8.683 7.631 9.879 LD50 LOCL UPCL 6.639 5.420 8.133 LD10 LOCL UPCL 11.355 9.183 LD90 LOCL UPCL 14.118

Cathish (corp)

Cathish (corp)

561553

Done Peullen : 12. 7. 1Ξ. ic. 12. Tat CHIZ = 5.99 > 4.4784 1.93724 1.3384 4.838 3.633 6.443 2.503 1.552 4.035 9.353 6.480 13.499

12

1Ξ. 6.5 7. 12. ic. 12. 12. Tot (412 = 5.99 > 2,334 4.478 1.984 1.672 2.384 YINT LW M CHIZ 4.838 3.633 6.443 LD50 LOCL UPCL 2.503 1.552 4.035 LD10 LOCL UPCL 9.353 LD90 6.480 LOCL UPCL 13.499

(n)	**************************************		. 2	, , , , , ,	c	,		2	
5									(X)
/									
						1411 .111			
-7-									
000									9
3									
- 10									2
3									9
3									
5									
(3)			1_1_1						
0 - 1									
A - A									The state of the s
							edeli olidori edeli olidori		
3									
} } p~*									
9									
-	'								111111
-									
- 6		70			441444444			2 2 -	5 2 -
66		99.5	6 8 6	95 .	5	John 60 50	ρ N		
					•	~ ~			<u> </u>

1083	2/	VALIDATION	SHEET	CRF #		Timetania de Sandaga do	 PAGE	1_	_0F	1	
FORMULATION: % a.i. S Tech.	SC #	CHEMICAL N CGA-247 (Metola	705	Test	Labu Typ	e: er E M D	Acu		Dece 6-ho	mber, ur LC	

CITATION:

Sachesse, K., and L. Ullmann. 1974. Acute Toxicity to Rainbow Trout, Crucian Carp, Channel Catfish, Bluegill, and Guppy of Technical CGA 24705. Ciba

Supplemental

VALIDATION CATEGORY:

Geigy, Ltd.

RESULTS:

96-hour LC₅₀ for the guppy, Lebistes reticulatus, was reported to be 8.6 ppm (95% $\overline{\text{C.I.}} = 7.4-10.5 \text{ ppm}$).

VALIDATION CATEGORY RATIONALE:

<u>Lebistes</u> reticulatus is not an acceptable test species for studies submitted in support of pesticide registration.

CATEGORY REPAIRABILITY/RATIONALE:

No.

108801	VALIDATION SHEET	CRF # PAGE 1 OF 1
FORMULATION: % a.i. SC # Tech.	CHEMICAL NAME	IA IB T FW EC R Validator: Date: Labuda 02 December, 197
·	(Metolachlor)	Test Type: Warmwater Fish Acute 96-hour LC ₅₀ MRILH 00015534
mmachman advantation of the state of the s	K. Til nakil nakina til sin mininganggan proposaya kalanca ng "Asakhakapanga, kalancapanga, kalancapanga, kala	Test ID.# ESF-4

CITATION: Sachesse, K., and L. Ullman. 1974. Acute Toxicity to Rainbow Trout, Crucian Carp, Channel Catfish, Bluegill, and Guppy of Technical CGA-24705. Ciba-Geigy, Ltd.

Validation Category:
Core

RESULTS:

96-hour LC₅₀ for Ictalurus punctatus (?) was reported to be 4.9 ppm (95% C.I. = 3.6-6.8 ppm).

VALIDATION CATEGORY RATIONALE:

The species tested was <u>Ictalurus</u> punctatus rather than <u>Ictalurus</u> ameiurus as reported.

CATEGORY REPAIRABILITY/RATIONALE:

, , , , , , , , , , , , , , , , , , , ,	333	VALIDATION SHEET	CRF #	PAGE	1	0F	1	·
FORMULATION % a.i.	SC #	CHEMICAL NAME CGA-24705 (Metolachlor)	DE STREET, LEGISTRES AND SELECTION OF THE STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, DESCRIPTION OF THE STREET, AND STREET, DESCRIPTION OF THE STREET, AND STREET, DESCRIPTION OF THE STR	ish Ac	R Date 02 ute	Dece 96-h		
Tech.	e (da), a ** nike ani ni n		Test Type: Warmwater F: MMID#	90	ute	96-h	our L	-

CITATION:

RESULTS:

Sachesse, K., and L. Ullmann. 1974. Acute Toxicity to Rainbow Trout, Crucian Carp, Channel Catfish, Bluegill, and Guppy of

Technical CGA 24705. Ciba

Geigy, Ltd.

96-hour LC for Carassius carassius was reported to be 4.9 ppm (95% C.I. = 3.6 - 6.8 ppm).

VALIDATION CATEGORY RATIONALE:

Crucian carp, considered a warmwater species, should not be tested at temperatures less than 18° C. In this study they were tested at 14° C \pm 2°.

VALIDATION CATEGORY:

Supplemental

CATEGORY REPAIRABILITY/RATIONALE: No.

